sin(kπ+α)=(-1)ksinα(k∈Z);
cos(kπ+α)=(-1)kcosα(k∈Z);
tan(kπ+α)=(-1)ktanα(k∈Z);
cot(kπ+α)=(-1)kcotα(k∈Z)。">

免费a一毛片,有码毛片,好爽又高潮了毛片免费下载16禁,黄色一级免费网站,毛片二区,一级毛片视频免费,性a视频

高中三角函數(shù)解題模型及技巧

回答
瑞文問答

2024-07-21

見“給角求值”問題,運用“新興”誘導(dǎo)公式 一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.
sin(kπ+α)=(-1)ksinα(k∈Z);
cos(kπ+α)=(-1)kcosα(k∈Z);
tan(kπ+α)=(-1)ktanα(k∈Z);
cot(kπ+α)=(-1)kcotα(k∈Z)。

擴展資料

  見“sinα±cosα”問題,運用三角“八卦圖”

  1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

  2. sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

  3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);

  4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi)。

  見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。

  “見齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.

和田市| 汶上县| 改则县| 老河口市| 古浪县| 方城县| 寻乌县| 黑水县| 泽普县| 祁门县| 六枝特区| 巴林右旗| 常宁市| 大渡口区| 宜丰县| 吴桥县| 客服| 甘泉县| 浏阳市| 武陟县| 吉林市| 玛沁县| 新乡市| 通州市| 鄂尔多斯市| 葵青区| 邢台市| 平湖市| 六安市| 伊吾县| 桂东县| 南城县| 伊春市| 营山县| 湘潭县| 英超| 余庆县| 乳山市| 永清县| 江津市| 嘉禾县|