免费a一毛片,有码毛片,好爽又高潮了毛片免费下载16禁,黄色一级免费网站,毛片二区,一级毛片视频免费,性a视频

對口高考數學(xué)知識點(diǎn)總結

時(shí)間:2022-06-08 13:14:54 總結 我要投稿

對口高考數學(xué)知識點(diǎn)總結

  總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況加以總結和概括的書(shū)面材料,通過(guò)它可以全面地、系統地了解以往的學(xué)習和工作情況,不妨坐下來(lái)好好寫(xiě)寫(xiě)總結吧。如何把總結做到重點(diǎn)突出呢?下面是小編為大家收集的對口高考數學(xué)知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。

對口高考數學(xué)知識點(diǎn)總結

  對口高考數學(xué)知識點(diǎn)總結 篇1

  (1)不等關(guān)系

  感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

  (2)一元二次不等式

  ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

  ②通過(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。

  ③會(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

  (3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題

  ①從實(shí)際情境中抽象出二元一次不等式組。

  ②了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。

  ③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

  (4)基本不等式:

  ①探索并了解基本不等式的證明過(guò)程。

  ②會(huì )用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題。

  對口高考數學(xué)知識點(diǎn)總結 篇2

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:

  方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).

  3、函數零點(diǎn)的求法:

  求函數的零點(diǎn):

  (1)(代數法)求方程的實(shí)數根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  4、二次函數的零點(diǎn):

  二次函數.

  1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

  對口高考數學(xué)知識點(diǎn)總結 篇3

  1.集合的有關(guān)概念。

  1)集合(集):某些指定的對象集在一起就成為一個(gè)集合(集).其中每一個(gè)對象叫元素

  注意:①集合與集合的元素是兩個(gè)不同的概念,教科書(shū)中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線(xiàn)的概念類(lèi)似。

  ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

  ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類(lèi):有限集,無(wú)限集,空集。

  4)常用數集:N,Z,Q,R,N.

  2.子集、交集、并集、補集、空集、全集等概念。

  1)子集:若對x∈A都有x∈B,則A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且)

  3)交集:A∩B={x| x∈A且x∈B}

  4)并集:A∪B={x| x∈A或x∈B}

  5)補集:CUA={x| x A但x∈U}

  注意:①? A,若A≠?,則? A ;

  ②若,,則;

  ③若且,則A=B(等集)

  3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語(yǔ)和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

  4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系

  ①A∩B=A A B;②A(yíng)∪B=B A B;③A B C uA C uB;

  ④A∩CuB =空集CuA B;⑤CuA∪B=I A B。

  5.交、并集運算的性質(zhì)

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A(yíng)∪A=A,A∪? =A,A∪B=B∪A;

  ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的個(gè)數:設集合A的元素個(gè)數是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

  對口高考數學(xué)知識點(diǎn)總結 篇4

  考點(diǎn)一:集合與簡(jiǎn)易邏輯

  集合部分一般以選擇題出現,屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀(guān)性,并注重集合表示方法的轉換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結詞、“充要關(guān)系”、命題真偽的判斷、全稱(chēng)命題和特稱(chēng)命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達數學(xué)解題過(guò)程和邏輯推理。

  考點(diǎn)二:函數與導數

  函數是高考的重點(diǎn)內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質(zhì)、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質(zhì)。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡(jiǎn)單應用,如求函數的單調區間、極值與最值等,通常以客觀(guān)題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯(lián)系在一起以解答題的形式出現,如一些不等式恒成立問(wèn)題、參數的取值范圍問(wèn)題、方程根的個(gè)數問(wèn)題、不等式的證明等問(wèn)題。

  考點(diǎn)三:三角函數與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點(diǎn)的補充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點(diǎn)考查平面向量數量積的概念及應用,向量與直線(xiàn)、圓錐曲線(xiàn)、數列、不等式、三角函數等結合,解決角度、垂直、共線(xiàn)等問(wèn)題是“新熱點(diǎn)”題型。

  考點(diǎn)四:數列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線(xiàn)性規劃問(wèn)題、基本不等式的應用等,通常會(huì )在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進(jìn)行考查。在選擇、填空題中考查等差或等比數列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目。

  考點(diǎn)五:立體幾何與空間向量

  一是考查空間幾何體的結構特征、直觀(guān)圖與三視圖;二是考查空間點(diǎn)、線(xiàn)、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線(xiàn)面平行與垂直、求空間角等(文科不要求)。在高考試卷中,一般有1~2個(gè)客觀(guān)題和一個(gè)解答題,多為中檔題。

  考點(diǎn)六:解析幾何

  一般有1~2個(gè)客觀(guān)題和1個(gè)解答題,其中客觀(guān)題主要考查直線(xiàn)斜率、直線(xiàn)方程、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)的'定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線(xiàn)與橢圓、拋物線(xiàn)等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。

  考點(diǎn)七:算法復數推理與證明

  高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”。考查的熱點(diǎn)是流程圖的識別與算法語(yǔ)言的閱讀理解。算法與數列知識的網(wǎng)絡(luò )交匯命題是考查的主流。復數考查的重點(diǎn)是復數的有關(guān)概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大。推理證明部分命題的方向主要會(huì )在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學(xué)歸納法可能作為解答題的一小問(wèn)。

  對口高考數學(xué)知識點(diǎn)總結 篇5

  一、高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節

  主要是考函數和導數,因為這是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;第二是函數的解答題,重點(diǎn)考察的是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數

  對于這部分知識重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。

  三、數列

  數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。

  五、概率和統計

  概率和統計主要屬于數學(xué)應用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨立事件和獨立重復事件發(fā)生的概率。

  六、解析幾何

  這部分內容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(cháng)問(wèn)題;第四類(lèi)是對稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準確度。

  七、壓軸題

  同學(xué)們在最后的備考復習中,還應該把重點(diǎn)放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  對口高考數學(xué)知識點(diǎn)總結 篇6

  一、函數的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開(kāi)方數大于等于零;

  3、對數的真數大于零;

  4、指數函數和對數函數的底數大于零且不等于1;

  5、三角函數正切函數y=tanx中x≠kπ+π/2;

  6、如果函數是由實(shí)際意義確定的解析式,應依據自變量的實(shí)際意義確定其取值范圍。

  二、函數的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數法;

  4、函數方程法;

  5、參數法;

  6、配方法

  三、函數的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調性法;

  7、直接法

  四、函數的最值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調性法

  五、函數單調性的常用結論:

  1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個(gè)區間上也為增(減)函數。

  2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

  3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

  4、奇函數在對稱(chēng)區間上的單調性相同,偶函數在對稱(chēng)區間上的單調性相反。

  5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

  六、函數奇偶性的常用結論:

  1、如果一個(gè)奇函數在x=0處有定義,則f(0)=0,如果一個(gè)函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

  2、兩個(gè)奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

  3、一個(gè)奇函數與一個(gè)偶函數的積(商)為奇函數。

  4、兩個(gè)函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個(gè)是偶函數,那么該復合函數就是偶函數;當兩個(gè)函數都是奇函數時(shí),該復合函數是奇函數。

  5、若函數f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數和一個(gè)偶函數的和。

  對口高考數學(xué)知識點(diǎn)總結 篇7

  1、函數零點(diǎn)的概念:

  對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:

  函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn)。

  3、函數零點(diǎn)的求法:

  求函數的零點(diǎn):

  (1)(代數法)求方程的實(shí)數根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。

  4、二次函數的零點(diǎn):

  二次函數。

  1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

  3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。

  對口高考數學(xué)知識點(diǎn)總結 篇8

  1.數列的定義

  按一定次序排列的一列數叫做數列,數列中的每一個(gè)數都叫做數列的項.

  (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

  (2)在數列的定義中并沒(méi)有規定數列中的數必須不同,因此,在同一數列中可以出現多個(gè)相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

  (4)數列的項與它的項數是不同的,數列的項是指這個(gè)數列中的某一個(gè)確定的數,是一個(gè)函數值,也就是相當于f(n),而項數是指這個(gè)數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序對于數列來(lái)講是十分重要的,有幾個(gè)相同的數,由于它們的排列次序不同,構成的數列就不是一個(gè)相同的數列,顯然數列與數集有本質(zhì)的區別.如:2,3,4,5,6這5個(gè)數按不同的次序排列時(shí),就會(huì )得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

  2.數列的分類(lèi)

  (1)根據數列的項數多少可以對數列進(jìn)行分類(lèi),分為有窮數列和無(wú)窮數列.在寫(xiě)數列時(shí),對于有窮數列,要把末項寫(xiě)出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數列.

  (2)按照項與項之間的大小關(guān)系或數列的增減性可以分為以下幾類(lèi):遞增數列、遞減數列、擺動(dòng)數列、常數列.

  3.數列的通項公式

  數列是按一定次序排列的一列數,其內涵的本質(zhì)屬性是確定這一列數的規律,這個(gè)規律通常是用式子f(n)來(lái)表示的,

  這兩個(gè)通項公式形式上雖然不同,但表示同一個(gè)數列,正像每個(gè)函數關(guān)系不都能用解析式表達出來(lái)一樣,也不是每個(gè)數列都能寫(xiě)出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個(gè)數列前面的有限項,無(wú)其他說(shuō)明,數列是不能確定的,通項公式更非.如:數列1,2,3,4。

  對口高考數學(xué)知識點(diǎn)總結 篇9

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無(wú)序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數集及其記法:

  非負整數集(即自然數集) 記作:N

  正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類(lèi):

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

  ④ 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運算

  運算類(lèi)型 交 集 并 集 補 集

  定 義 由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

【對口高考數學(xué)知識點(diǎn)總結】相關(guān)文章:

高考數學(xué)知識點(diǎn)總結11-18

高考數學(xué)知識點(diǎn)總結09-03

高考數學(xué)方差必考知識點(diǎn)總結04-11

高考前數學(xué)知識點(diǎn)總結04-11

高考數學(xué)知識點(diǎn)總結整理01-24

高三數學(xué)高考知識點(diǎn)總結09-24

高考數學(xué)易錯的知識點(diǎn)總結03-31

成人高考數學(xué)知識點(diǎn)總結12-03

高考數學(xué)知識點(diǎn)歸納總結整理12-23

年辖:市辖区| 察隅县| 兴化市| 丽水市| 新晃| 桓仁| 和静县| 沂南县| 沧州市| 宣城市| 中卫市| 丰台区| 满城县| 中阳县| 雅安市| 明溪县| 房山区| 凉城县| 遵义县| 惠来县| 曲水县| 大竹县| 潮安县| 宁津县| 绍兴县| 崇左市| 阆中市| 尚志市| 沁源县| 韶山市| 双桥区| 临沭县| 平江县| 惠州市| 霍林郭勒市| 措美县| 湘乡市| 鹤壁市| 盐津县| 尖扎县| 鄂尔多斯市|